
Wireless Testbench™
Getting Started Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Wireless Testbench™ Getting Started Guide
© COPYRIGHT 2022–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2022 Online only New for Version 1.0 (Release 2022a)
September 2022 Online only Revised for Version 1.1 (Release 2022b)
March 2023 Online only Revised for Version 1.2 (Release 2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Product Overview
1

Wireless Testbench Product Description . 1-2

About Wireless Testbench Applications Using SDR
2

Wireless Testbench Applications on SDR . 2-2

Supported Radio Devices . 2-3
Supported NI USRP Radios . 2-3

Tutorials
3

Capture from Frequency Band . 3-2

Transmit Waveform . 3-5

Loopback Transmit and Capture . 3-8

Triggered Capture Using Preamble Detection . 3-11

iii

Contents

Product Overview

1

Wireless Testbench Product Description
Test wideband wireless systems and perform spectrum monitoring

Wireless Testbench enables you to test wideband wireless systems using MATLAB® with a software-
defined radio (SDR). You can use your SDR to perform spectrum monitoring with high-speed data
capture.

The product provides capabilities such as intelligent signal capture and hardware-based resampling
that leverage the FPGA hardware on the SDR. You can specify waveform-specific characteristics to
trigger signal capture and analyze the data of interest. You can also transmit and capture custom
signals at arbitrary sample rates or standards-based signals (5G and WLAN) at their native sample
rates.

1 Product Overview

1-2

About Wireless Testbench Applications
Using SDR

2

Wireless Testbench Applications on SDR
Wireless Testbench provides prebuilt hardware images that enable you to explore wireless
applications for software-defined-radio (SDR) hardware by using MATLAB objects. This diagram is a
high-level overview of how Wireless Testbench objects integrate SDR capabilities of supported radios.

Using a Wireless Testbench object, you can configure the prebuilt hardware image to transmit,
capture, or detect wireless signals and write your application code for experimenting and testing.

Wireless Testbench Object Description
basebandReceiver Configure SDR as baseband receiver
basebandTransceiver Configure SDR as baseband transceiver
basebandTransmitter Configure SDR as baseband transmitter
preambleDetector Configure SDR as preamble detector

See Also

More About
• “Supported Radio Devices” on page 2-3

2 About Wireless Testbench Applications Using SDR

2-2

Supported Radio Devices
The Wireless Testbench software provides radio support through dedicated hardware support
packages. To use a supported radio with a Wireless Testbench feature, you must install the associated
support package from the Add-On Explorer.

Supported NI USRP Radios
Wireless Testbench Support Package for NI™ USRP™ Radios provides support for these radios.

USRP Networked Series

• USRP N310
• USRP N320
• USRP N321

USRP X Series

• USRP X310 with UBX 160 daughterboard

• The USRP X310 radio support also enables you to use the equivalent USRP NI–2944R and
USRP NI–2954R radios with Wireless Testbench. For more information on how to convert these
radios into an equivalent X310 radio, see Running UHD and GNU Radio on NI USRP-RIO on
the hardware vendor website.

• USRP X410

See Also

More About
• “Install Support Package for NI USRP Radios”
• “Connect and Set Up NI USRP Radios”

 Supported Radio Devices

2-3

https://kb.ettus.com/Running_UHD_and_GNU_Radio_on_NI_USRP-RIO

Tutorials

3

Capture from Frequency Band

This example shows how to configure a software-defined radio (SDR) as a baseband receiver to
capture data from a specified frequency band. The example also plots the frequency spectrum of the
captured data.

Set Up Radio

Call the radioConfigurations function. The function returns all available radio setup
configurations that you saved using the Radio Setup wizard. For more information, see “Connect and
Set Up NI USRP Radios”.

savedRadioConfigurations = radioConfigurations;

To update the dropdown menu with your saved radio setup configuration names, click Update. Then
select the radio to use with this example.

savedRadioConfigurationNames = [string({savedRadioConfigurations.Name})];

radio = ;

Specify Frequency Band

Specify the start and the end of the frequency band. By default, this example captures the 87.5-108
MHz frequency band, typically allocated to FM radio.

frequencyBand.Start = ;

frequencyBand.End = ;
frequencyBand.Width = frequencyBand.End-frequencyBand.Start;
frequencyBand.MidPoint = frequencyBand.Start + frequencyBand.Width/2;

Configure Baseband Receiver

Create a baseband receiver object with the specified radio. Because the object requires exclusive
access to radio hardware resources, before running this example for the first time, clear any other
object associated with the specified radio. In subsequent runs, to speed up the execution time of the
example, reuse your new workspace object.

if ~exist("bbrx","var")
 bbrx = basebandReceiver(radio);
end

To capture the full width of the frequency band:

• Set the SampleRate property to a value that is greater than or equal to the width of the
frequency band.

• Set the CenterFrequency property to the value that corresponds to the middle of the frequency
band.

• Set the RadioGain property according to the local signal strength.

bbrx.SampleRate = ;
bbrx.CenterFrequency = frequencyBand.MidPoint;

bbrx.RadioGain = ;

3 Tutorials

3-2

To update the dropdown menu with the antennas available for your radio, call the
hCaptureAntennas helper function. Then select the antenna to use with this example.

antennaSelection = hCaptureAntennas(radio);

bbrx.Antennas = ;

Capture IQ Data

To capture IQ data from the specified frequency band, call the capture function on the baseband
receiver object. Specify the length of the capture.

captureLength = milliseconds();
data = capture(bbrx,captureLength);

Plot Spectrum of Captured Data

Create a spectrumAnalyzer object. To speed up the execution time of this example upon
subsequent runs, reuse the spectrum analyzer object. Set the sample rate of the spectrum analyzer
object to the sample rate of the baseband receiver object. Plot the spectrum and spectrogram of the
captured data.

if ~exist("spectrumScope","var")
 spectrumScope = spectrumAnalyzer;
end
spectrumScope.SampleRate = bbrx.SampleRate;
spectrumScope.ChannelNames = bbrx.Antennas;
spectrumScope.FrequencyOffset = bbrx.CenterFrequency;
spectrumScope.ViewType = "Spectrum and spectrogram";
spectrumScope.TimeSpanSource = "Property";
spectrumScope.TimeSpan = seconds(captureLength);
spectrumScope.SpectrumUnits = "dBFS";
spectrumScope.FullScaleSource = "Property";
spectrumScope.FullScale = double(intmax('int16'));
spectrumScope(data);
spectrumScope.show;
release(spectrumScope);

 Capture from Frequency Band

3-3

To call the capture function again and to update the spectrum analyzer by rerunning the current
section, click Capture and plot frequency spectrum.

See Also
Functions
radioConfigurations

Objects
basebandReceiver

More About
• “Calibrate Radio Gain For Signal Capture”
• “Capture Wideband Spectrum by Combining Data from Multiple Antennas”
• “Supported Radio Devices” on page 2-3

3 Tutorials

3-4

Transmit Waveform

This example shows how to configure a software-defined radio (SDR) as a baseband transmitter to
transmit a custom generated wireless waveform.

Set Up Radio

Call the radioConfigurations function. The function returns all available radio setup
configurations that you saved using the Radio Setup wizard. For more information, see “Connect and
Set Up NI USRP Radios”.

savedRadioConfigurations = radioConfigurations;

To update the dropdown menu with your saved radio setup configuration names, click Update. Then
select the radio to use with this example.

savedRadioConfigurationNames = [string({savedRadioConfigurations.Name})];

radio = ;

Specify Wireless Waveform

Use the attached QAM-4-GeneratedWaveform.mat file to specify the transmit waveform. The
waveStruct structure in this file contains a QAM-4 waveform that is generated by using the Wireless
Waveform Generator app.

load("QAM-4-GeneratedWaveform.mat")

Configure Baseband Transmitter

Create a baseband transmitter object with the specified radio. Because the object requires exclusive
access to radio hardware resources, before running this example for the first time, clear any other
object associated with the specified radio. In subsequent runs, to speed up the execution time of the
example, reuse your new workspace object.

if ~exist("bbtx","var")
 bbtx = basebandTransmitter(radio);
end

Configure the baseband transmitter object according to the parameters of the wireless waveform.

• Set the SampleRate property to the sample rate of the generated waveform.
• Set the CenterFrequency property to a value in the frequency spectrum indicating the position

of the waveform transmission.

bbtx.SampleRate = ;

bbtx.CenterFrequency = ;

Set the RadioGain property according to the local wireless channel. Specify the transmit antennas.

bbtx.RadioGain = ;

 Transmit Waveform

3-5

To update the dropdown menu with the antennas available for your radio, call the
hTransmitAntennas helper function. Then select the antenna to use with this example.

antennaSelection = hTransmitAntennas(radio);

bbtx.Antennas = ;

Plot Wireless Waveform

Plot the first hundred samples of the wireless waveform.

waveform = ;
figure();
subplot(2,1,1); plot(real(double(waveform(1:100))));
title("Real Part of Waveform")
xlabel("Samples"); ylabel("Amplitude");
subplot(2,1,2); plot(imag(double(waveform(1:100))),color='r');
title("Imaginary Part of Waveform")
xlabel("Samples"); ylabel("Amplitude");

Transmit Wireless Waveform

Call the transmit function on the baseband transmitter object. Specify the type of transmission.

3 Tutorials

3-6

transmit(bbtx,waveform,);

End Transmission

To end a continuous transmission, call the stopTransmission function on the baseband transmitter
object.

stopTransmission(bbtx);

See Also
Functions
radioConfigurations

Objects
basebandTransmitter

More About
• “Capture from Frequency Band” on page 3-2
• “Supported Radio Devices” on page 2-3

 Transmit Waveform

3-7

Loopback Transmit and Capture

This example shows how to configure a software-defined radio (SDR) as a baseband transceiver to
transmit and capture a custom wireless waveform over the air.

Set Up Radio

Call the radioConfigurations function. The function returns all available radio setup
configurations that you saved using the Radio Setup wizard. For more information, see “Connect and
Set Up NI USRP Radios”.

savedRadioConfigurations = radioConfigurations;

To update the dropdown menu with your saved radio setup configuration names, click Update. Then
select the radio to use with this example.

savedRadioConfigurationNames = [string({savedRadioConfigurations.Name})];

radio = ;

Specify Wireless Waveform

Use the attached TestTone.mat file to specify the transmit waveform. The waveStruct structure
contains a complex sine tone that is generated by using the Wireless Waveform Generator app.

load("TestTone.mat")

Configure Baseband Transceiver

Create a baseband transceiver object with the specified radio. Because the object requires exclusive
access to radio hardware resources, before running this example for the first time, clear any other
object associated with the specified radio. In subsequent runs, to speed up the execution time of the
example, reuse your new workspace object.

if ~exist("bbtrx","var")
 bbtrx = basebandTransceiver(radio);
end

Configure the baseband transceiver object using the parameters of the wireless waveform.

• Set the SampleRate property to the sample rate of the generated waveform.
• Set the CenterFrequency property to a value in the frequency spectrum indicating the position

of the waveform transmission.

bbtrx.SampleRate = ;

bbtrx.TransmitCenterFrequency = ;
bbtrx.CaptureCenterFrequency = bbtrx.TransmitCenterFrequency;

Set the TransmitRadioGain and CaptureRadioGain properties according to the local wireless
channel.

bbtrx.TransmitRadioGain = ;

bbtrx.CaptureRadioGain = ;

3 Tutorials

3-8

To update the dropdown menus with the antennas available for your radio, call the
hTransmitAntennas and hCaptureAntennas helper functions. Then select the antennas to use
with this example.

transmitAntennaSelection = hTransmitAntennas(radio);
captureAntennaSelection = hCaptureAntennas(radio);

bbtrx.TransmitAntennas = ;

bbtrx.CaptureAntennas = ;

Transmit Wireless Waveform

Call the transmit function on the baseband transceiver object. Specify a continuous transmission.

transmit(bbtrx, ,"continuous");

Capture IQ Data

To capture the transmitted waveform, call the capture function on the baseband receiver object.
Specify the length of the capture.

pause(1)

captureLength = milliseconds();
data = capture(bbtrx,captureLength);

End Transmission

To end the continuous transmission, call the stopTransmission function on the baseband
transceiver object.

stopTransmission(bbtrx);

Plot Spectrum of Captured Waveform

Create a spectrumAnalyzer object. To speed up the execution time of this example upon
subsequent runs, reuse the spectrum analyzer object. Set the sample rate of the spectrum analyzer
object to the sample rate of the baseband transceiver object. Plot the spectrum and spectrogram of
the captured data.

if ~exist("spectrumScope","var")
 spectrumScope = spectrumAnalyzer;
end
spectrumScope.SampleRate = bbtrx.SampleRate;
spectrumScope.ChannelNames = bbtrx.CaptureAntennas;
spectrumScope.FrequencyOffset = bbtrx.CaptureCenterFrequency;
spectrumScope.SpectrumUnits = "dBFS";
spectrumScope.FullScaleSource = "Property";
spectrumScope.FullScale = double(intmax('int16'));
spectrumScope(data);
spectrumScope.show;
release(spectrumScope);

 Loopback Transmit and Capture

3-9

To transmit and capture the waveform again and to update the spectrum analyzer by rerunning the
current section, click Capture and plot frequency spectrum.

See Also
Functions
radioConfigurations

Objects
basebandTransceiver

More About
• “Transmit Waveform” on page 3-5
• “Calibrate Radio Gain For Signal Capture”
• “Supported Radio Devices” on page 2-3

3 Tutorials

3-10

Triggered Capture Using Preamble Detection

This example shows how to use a software-defined-radio (SDR) to capture data from the air using
preamble detection. The example also shows how to use the transmit capabilities of the same radio to
loop back a test waveform.

Introduction

The example demonstrates these steps.

1 Generate a waveform containing a preamble.
2 Configure the preamble detector to detect the preamble sequence.
3 Use the plotThreshold function to calibrate a fixed or adaptive threshold and capture data.
4 Explore trigger offset.

Set Up Radio

Call the radioConfigurations function. The function returns all available radio setup
configurations that you saved using the Radio Setup wizard. For more information, see “Connect and
Set Up NI USRP Radios”.

savedRadioConfigurations = radioConfigurations;

To update the dropdown menu with your saved radio setup configuration names, click Update. Then
select the radio to use with this example.

savedRadioConfigurationNames = [string({savedRadioConfigurations.Name})];

radio = ;

Generate Transmission Waveform

Create a transmission waveform containing a Zadoff-Chu preamble sequence. To enable
straightforward demonstration of the preamble detection workflow, concatenate zeros before and
after the preamble.

Generate a preamble sequence of length 137 by using 38th root of the Zadoff-Chu sequence and
normalize. Concatenate with zeros.

zcseq = zadoffChuSeq(38,137);
preamble = zcseq/norm(zcseq,2);
prePadLen = 2501;
postPadLen = 2500;
headSignal = complex(zeros(prePadLen,1),zeros(prePadLen,1));
rearSignal = complex(zeros(postPadLen,1),zeros(postPadLen,1));
inputSignal = [headSignal; zcseq*0.75; rearSignal];

Plot transmission waveform.

figure();
subplot(2,1,1); plot(real(inputSignal));
subtitle("Real Part");
xlabel("Samples");
ylabel("Amplitude");
title("Waveform with Preamble");

 Triggered Capture Using Preamble Detection

3-11

subplot(2,1,2);
plot(imag(inputSignal),Color='r');
subtitle("Imaginary Part");
xlabel("Samples");
ylabel("Amplitude");

Configure Preamble Detector

Create a preamble detector object with the specified radio. Because the object requires exclusive
access to radio hardware resources, before running this example for the first time, clear any other
object associated with the specified radio. To speed up the execution time of the example in
subsequent runs, reuse your new workspace object.

if ~exist("pd","var")
 pd = preambleDetector(radio);
end

Set the RF properties of the preamble detector. Set the RadioGain property according to the local
wireless channel.

pd.SampleRate = ;

pd.CenterFrequency = ;

pd.RadioGain = ; % Increase if signal levels are low.

3 Tutorials

3-12

To update the dropdown menu with the antennas available for capture on your radio, call the
hCaptureAntennas helper function. Then select the antenna to use with this example.

captureAntennaSelection = hCaptureAntennas(radio);

pd.Antennas = ;

Configure the preamble sequence for preamble detection.

pd.Preamble = preamble;

Set the capture data type to the data type of the generated transmission waveform.

pd.CaptureDataType = "double";

Configure Transmission Variables

Set the transmit gain and transmit antenna values. Set the transmit gain variable according to the
local wireless channel.

txGain = ; % Increase if signal levels are low.

To update the dropdown menu with the antennas available for transmit on your radio, call the
hTransmitAntennas helper function. Then select the antenna to use with this example.

transmitAntennaSelection = hTransmitAntennas(radio);

txAntenna = ;

Detect Preamble Using Fixed Threshold and Capture Data

Data capture is triggered when the correlator output is greater than the fixed threshold. By setting
the fixed threshold to 0, you can analyze the behavior of the preamble detector and understand how
to set the fixed threshold value for successful detection.

Set the preamble detector to use fixed threshold. To set the threshold method, stop any ongoing
transmission.

stopTransmission(pd);
pd.ThresholdMethod = "fixed";

Set the fixed threshold initially to 0.

pd.FixedThreshold = 0;

Transmit the test waveform.

transmit(pd,inputSignal,"continuous",TransmitGain=txGain, ...
 TransmitCenterFrequency=pd.CenterFrequency,TransmitAntennas=txAntenna);

Use the plotThreshold function to analyze the behavior of the detector by plotting 10,000 samples.
Because the fixed threshold value is 0, all samples from the correlator output are possible trigger
points. Check the correlator output values at the peak trigger points. Because the sampling phase
determines the quality of the correlator peak, run the plotThreshold function multiple times to see
how the trigger points change.

plotThreshold(pd,10e3);

 Triggered Capture Using Preamble Detection

3-13

Choose a threshold value that is below any of the trigger point values. Plot the threshold information
again and adjust the fixed threshold until the trigger points appear only on the correlator output
peak. Run the plotThreshold function multiple times to see any sampling phase effects.

pd.FixedThreshold = ;
plotThreshold(pd,10e3);

3 Tutorials

3-14

Once the threshold is set, capture data.

[data, ~, ~, status] = capture(pd,10e3,seconds(1));
plotCapturedData(data,status);

 Triggered Capture Using Preamble Detection

3-15

Detect Preamble Using Adaptive Threshold and Capture Data

As an alternative to the fixed threshold, data capture can be triggered when the correlator output is
greater than the adaptive threshold, which dynamically varies with the input signal power. By setting
the adaptive threshold gain and offset to 0, you can analyze the behavior of the preamble detector
and understand how to configure the adaptive threshold for successful detection.

Set the preamble detector to use adaptive threshold. To set the threshold method, stop any ongoing
transmission.

stopTransmission(pd);
pd.ThresholdMethod = 'adaptive';

Set the adaptive threshold gain and offset initially to 0.

pd.AdaptiveThresholdGain = 0;
pd.AdaptiveThresholdOffset = 0;

Transmit the test waveform.

transmit(pd,inputSignal,"continuous",TransmitGain=txGain, ...
 TransmitCenterFrequency=pd.CenterFrequency,TransmitAntennas=txAntenna);

Use the plotThreshold function to analyze the behavior of the detector by plotting 10,000 samples.
Check the correlator output values at the peak trigger points and run the plotThreshold function
multiple times if necessary.

plotThreshold(pd,10e3);

3 Tutorials

3-16

To remove all the trigger points from the bottom of the plot, set the adaptive threshold offset to a
value that is above the noise floor. Adjust the adaptive threshold gain and plot the threshold
information repeatedly until the correlator output is greater than the adaptive threshold.

pd.AdaptiveThresholdOffset = ;

pd.AdaptiveThresholdGain = ;
plotThreshold(pd,10e3);

 Triggered Capture Using Preamble Detection

3-17

Once the threshold is configured, capture data.

[data, ~, ~, status] = capture(pd,10e3,seconds(1));
plotCapturedData(data,status);

3 Tutorials

3-18

Set Trigger Offset to Include Preamble in Captured Data

To capture the preamble sequence, set the trigger offset to the length of the preamble. To set the
trigger offset, stop any ongoing transmission.

stopTransmission(pd);

pd.TriggerOffset = ;

Transmit the test waveform and capture data.

transmit(pd, inputSignal,"continuous",TransmitGain=txGain,...
 TransmitCenterFrequency=pd.CenterFrequency,TransmitAntennas=txAntenna);
% Detect and capture 10,000 samples, with a 1 second timeout
[data, ~, ~, status] = capture(pd,10e3,seconds(1));
plotCapturedData(data,status);

 Triggered Capture Using Preamble Detection

3-19

End Transmission

To end the continuous transmission, call the stopTransmission function on the preamble detector
object.

stopTransmission(pd);

Local Functions
function plotCapturedData(data,status)
if status % If detection is successful, plot data
 figure();
 subplot(2,1,1); plot(real(double(data)));
 title("Real Part of Captured Signal")
 xlabel("Samples"); ylabel("Amplitude");
 subplot(2,1,2); plot(imag(double(data)),color='r');
 title("Imaginary Part of Captured Signal")
 xlabel("Samples"); ylabel("Amplitude");
else
 disp("Detection failed.")
end
end

See Also
Functions
radioConfigurations

3 Tutorials

3-20

Objects
preambleDetector

More About
• “Capture from Frequency Band” on page 3-2
• “Supported Radio Devices” on page 2-3

 Triggered Capture Using Preamble Detection

3-21

	Product Overview
	Wireless Testbench Product Description

	About Wireless Testbench Applications Using SDR
	Wireless Testbench Applications on SDR
	Supported Radio Devices
	Supported NI USRP Radios

	Tutorials
	Capture from Frequency Band
	Transmit Waveform
	Loopback Transmit and Capture
	Triggered Capture Using Preamble Detection

